Kartézské souřadnice vs. polární souřadnice
V Geometrii je souřadnicový systém referenční systém, kde se čísla (nebo souřadnice) používají k jednoznačnému určení polohy bodu nebo jiného geometrického prvku v prostoru. Souřadnicové systémy umožňují převést geometrické úlohy na numerickou úlohu, která poskytuje základ pro analytickou geometrii.
Kartézský souřadnicový systém a polární souřadnicové systémy jsou dva z běžných souřadnicových systémů používaných v matematice.
Kartézské souřadnice
Kartézský souřadnicový systém používá jako referenci čáru reálného čísla. V jedné dimenzi sahá číselná řada od záporného nekonečna k kladnému nekonečnu. Když vezmeme v úvahu bod 0 jako začátek, lze změřit délku každého bodu. To poskytuje jedinečný způsob identifikace polohy na lince pomocí jediného čísla.
Koncept lze rozšířit do dvou a tří dimenzí, kde jsou použity číselné čáry kolmé na sebe. Všichni sdílejí stejný bod 0 jako začátek. Číselné řady se označují jako osy a často se nazývají osa X, osa Y a osa Z. Vzdálenost k bodu podél každé osy počínaje od (0, 0, 0), který je také známý jako počátek, a daný jako n-tice je známý jako souřadnice bodu. Obecný bod v tomto prostoru může být reprezentován souřadnicí (x, y, z). V rovinném systému, kde jsou pouze dvě osy, jsou souřadnice uvedeny jako (x, y). Rovina vytvořená osami je známá jako kartézská rovina a je často označována písmeny os. Např. Letadlo XY.
Tento obecný bod lze použít k popisu různých geometrických prvků omezením obecného bodu, aby se choval konkrétním způsobem. Například rovnice x ^ 2 + y ^ 2 = a ^ 2 představuje kruh. Spíše než kreslení kruhu s poloměrem a je možné označit kruh abstraktnějším způsobem, jak je uvedeno výše.
Polární souřadnice
Polární souřadnice používají k označení bodu diferenční referenční systém. Systém polárních souřadnic používá jako souřadnice úhel proti směru hodinových ručiček od kladného směru osy x a přímou vzdálenost k bodu.
Polární souřadnice mohou být reprezentovány jako výše v systému dvourozměrných kartézských souřadnic.
Transformace mezi polárním a kartézským systémem je dána následujícími vztahy:
r = √ (x 2 + y 2) ↔ x = r cosθ, y = r sinθ
θ = tan -1 (x / y)
Jaký je rozdíl mezi kartézskými a polárními souřadnicemi?
• Kartézské souřadnice používají jako osy číselné čáry a lze je použít v jedné, dvou nebo třech rozměrech. Proto má schopnost reprezentovat lineární, rovinné a objemové geometrie.
• Polární souřadnice používají jako souřadnice úhel a délku a mohou představovat pouze lineární a rovinné geometrie, ačkoli je možné ji vyvinout do systému válcových souřadnic, aby reprezentovaly plné geometrie.
• Oba systémy se používají k reprezentaci imaginárních čísel definováním imaginární osy a hrají zásadní roli ve složité algebře. Ačkoli v prostém tvaru jsou karteziánské souřadnice reálnými čísly (x, y, z), souřadnice v polárním systému nejsou vždy reálnými čísly; tj. pokud je úhel udáván ve stupních, souřadnice nejsou skutečné; pokud je úhel uveden v radiánech, souřadnice jsou skutečná čísla.